[Technical Calculations]
Selection of Ball Screws 2

-Constant Speed Torque Exerted on the Motor Output Thread

$$
\mathrm{T}_{1}=\left(\frac{\mathrm{PL}}{2 \pi \eta}+\mathrm{T}_{\mathrm{p}} \frac{(3 P \mathrm{P} \cdot \mathrm{P})}{3 P \mathrm{~L}}\right) \frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}(\mathrm{~N} \cdot \mathrm{~cm}) \cdots
$$

Where: PS3PL
T1: Driving Torque at Constant Speed(N.cm)
$P:$ External Axial Load(M)
$P=F+\mu M g$
F: Thrust Reaction Produced in Cutting Force(N)
M : Masses of Table and Work Piecel(Kg)
$\mathrm{H}:$ Coefficient of F Ficition on Sliding Surfa
$\mathrm{g}:$ Gravitational Acceleration $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
L : Ball Screw Lead(cm)
η : Mechanical Efficiency of Ball Screw or Gear
Tp: Friction Torque Caused by Preloading(N.cm)Referto Formula (5)
PL: Preload(N)
zi: Number of Pinion's Teeth
Acceleration Torque Exerted on the Motor Output Thread

$$
\begin{aligned}
& \mathrm{T}_{2}=J m \omega=J M \frac{2 \pi N}{60 \mathrm{t}} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~cm}) \cdots \\
& J_{M}=J_{1}+J_{4}+\left(\frac{Z_{1}}{Z_{2}}\right)^{2}\left\{\left(\mathrm{~J}_{2}+\mathrm{J}_{3}\right)+(\mathrm{J}+\mathrm{J} 6\}\right\}\left(\mathrm{kg} \cdot \mathrm{~cm}^{2}\right) \cdots
\end{aligned}
$$

Where: T_{2} : Driving Torque in A Acceleration($(\cdot \mathrm{ccm})$
ω : Motor Thread Angular A Acceleration(rad/s²)
N : Motor Thread Revolutions(minit)
$N:$ Motor Thread Revolutions(min ${ }^{-1}$)
JM : Moment of Ineria Exerted on the Motorkg.cm
$\mathrm{J}_{1}:$:Moment of Inertia Exerted on Pinion (kg-cm
J_{2} : Moment of nertia Exerted on Gearkg.cm²

$\mathrm{J}_{5}:$ Moment of inertia of moving body
J 6 : Moment of ineritia of coupling
$\mathrm{M}:$ Masses of Table and Work Piece(kg)
L : Ball Screw Lead(cm)
Moment of ineritie exerted on cylinders as screws and cylinders such as Gears
(Calculation of $1 \mathrm{i} \sim 4,4, \mathrm{~s})$ (Calculation of $\mathrm{J}(\sim 4, \mathrm{~J}, 6)$
$\mathrm{J}=\frac{32}{} \mathrm{D}^{4}\left(\mathrm{Kg} \cdot \mathrm{cm}^{2}\right) \cdots$
$\mathrm{D}:$ Cyininder Outer Diameter(cm)
$\ell:$ Cyyinder Length Dimem)
y : Naterial Specific Gravity
$J_{s}=M\left(\frac{L}{2 \pi}\right)^{2}\left(\mathrm{~kg} \cdot \mathrm{~cm}^{2}\right)$
-Tatarore Exyeted on the Moter Output Thead
Overall torque can be obtained by adding results from formulas (6) and (7).
 \square
Where:
Tm :
Tm : Total Torque Exerted on the Motor Output Thread(N.Cm)
T_{1} : Driving Torque at Constant Speed $(\mathrm{N} \cdot \mathrm{cm})$
T_{2} : Driving Torque at In Acceleration(N.Cm)
Once you have temporarily found the type of motor you need, check 1. effective torque,
2. acceleration constant and
3. motor overload properties and heat tolerance during repeated starting, stopping.

It is necessary to ensure a sufficient margin for these parameters.

Allowable Axial Load Curve

Method of Support

Ex.1. How to Obtain the Allowable Revolution Frequency alculation of allowable revolution frequency when ball screws with a thread outer diameter of 40 mm are fixed and supported with a distance of 2000 mm .
. Find the intersection between a distance of $2,000 \mathrm{~mm}$ between supports and a thread outer diameter of 40 mm .
2. Read the allowable revolution frequency for the intersection on the fixed-support graduation. The maximum allowable revolution frequency is $1650 \mathrm{~min}^{-1}$.

Ex.2. How to Obtain the Thread Diameter

Calculation of shaft diameter when maximum revolution of $2000 \mathrm{~min}^{-1}$ is fixed and supported with a distance of 1500 mm .

1. Find the intersection between a distance of 1500 mm of supports and the allowable revolution frequency of $2000 \mathrm{~min}^{-1}$ (from the fixed-support scale).
2. Read the thread diameter as 32 mm of the diagonal line to the intersection on the outside. The Maximum Revolutions is $2000 \mathrm{~min}^{-1}$. is satisfied thread diameter.

Ex.3. How to Obtain the Thread Diameter
his example assumes a distance of 2000 mm between load acting points, the fixed-support method of support and the max. axial load of 2400daN.

1. Find the intersection between a distance of 2000 mm between load acting points and the 2000mm between load acting points and the graduation).
2. Read the shaft diameter of the diagonal line nearest to the intersection on the outside. The shaft diameter can be a min. 40 mm .
(3min $n^{-1}=r /$ min $=r p m$
$1 \mathrm{daN}=10 \mathrm{~N} \approx 1.02 \mathrm{kgf}$
