Load Calculations

Since a linear system bears the weight of the work while it performs a reciprocating linear motion, the load exerted on the system can vary depending on the work's center of gravity, thrust acting position change, and the speed changes by starting, stopping and acceleration, deceleration.

It is necessary to take these conditions into consideration when selecting a linear system.

Table-5. Use Conditions and Load Calculation Formulas

W :Acting Load(N) P1,P2,P3,P4:Load applied to the Linear System(N) X.Y: Linear System Span(mm) V:Moving Speed(mm/sec) t1 :Acceleration Time(sec) t3:Deceleration Time(sec)

Mean Load Derived from Fluctuating Loads

In general, the load acting upon a linear system can change according to how the system is used. This happens for example when the reciprocating motion is started, stopped as compared to constant speed motion, and whether or not work is present during transfer, etc. Therefore, in order to correctly design the life span under various conditions and fluctuating loads, it is necessary to obtain a mean load and apply it to the life span calculations.

$\frac{1}{\ell} \left(P_1^3 \ell_1 + P_2^3 \ell_2 \cdots + Pn^3 \ell n \right)$

Pm : Mean Load Derived from Fluctuating Loads(N) ℓ : Total Travel Distance(m) (2) When load changes almost linearly(Fig-4)

Mean load Pm can be approximated by the following formula:

$P_{m\approx} - \frac{1}{2} (P_{min} + 2 \cdot P_{max})$

Pm=

Pmin: Min. Fluctuating Load (N)

Pmax: Max. Fluctuating Load(N)

(3) 3When the load change resembles a sinusoidal curve as shown in Fig-5 (a), (b), Mean Load Pm can be approximated by the following formula:

Fig-5(a)Pm≈0.65Pmax Fig-5(b)Pm≈0.75Pmax

Slide Guides

Rated life span is the total travel distance each linear quide of the same series can endure under the same conditions, without the occurrence of flaking in 90% of the system.

Rated life span can be obtained as follows from the basic dynamic load rating and the load to the slide guide.

$L = \left(\frac{f_{T}}{f_{W}} \cdot \frac{C}{P}\right)^{3} \cdot 50$	(1)
L : Rated Life Span(km)	C : Basic dynamic load rating(N)

L : Rated Life Span(km)

fT : Temperature Coefficient(See Fig-2) P : Acting Load(N)

fw : Load Coefficient(See Fig-4)

The life span hours can be computed as a number of hours by obtaining the travel distance for a unit of time. It can be obtained using the following formula, in which stroke length and stroke cycles are assumed to be constant.

l	Lh=	L·10 ³	
	LII=	2.ls.n1.60	

Lh : Life Span Hours(hr)		ls:Stroke Length(m)	
L	:Rated Life Span(km)	n1 : Reciprocating Times per Minute(cpm)	

Slide Wavs

Rated load for slide ways is determined by the rolling elements(numbers of rollers). It can be calculated by using the following formulas:

Co1: Basic Static Load Rating per Roller(N)

Z : Number or Rolling Elements

The life span for slide ways is calculated by using the following formula.

$L = \left(\frac{fT \cdot C}{fW \cdot P}\right)^{10/3} \cdot 50$	
L :Life Span Hours(km)	C : Dynamic Load Rating(N)
ft :Temperature Coefficient(See Fig-2)	P : Acting Load(N)
fw :Load Coefficient(See Fig-4)	

Life Span Hours

—(2)

L·103 Lh= 2.ls.n1.60 Lh : Life Span Hours(hr) ls:Stroke Length(m) L :Life Span Hours(km) n1: Reciprocating Times per Minute(cpm) 2806