[Technical Calculations]

Calculation of Life Span of Linear Systems 2

Load Calculations

Since a linear system bears the weight of the work while it performs a reciprocating linear motion, the load exerted on the system can hange and the speed changes by starting stopping and acceleration hange, and the speed changes by starting, stopping and acceleration, deceleration.
Table-5. Use Conditions and Load Calculation Formulas

It is necessary to take these conditions into consideration when selecting a linear system.

Type	Condition of Use and Load	Type	Condition of Use and Load
1	Horizontal Axis$\begin{aligned} & P_{1}=\frac{1}{4} W+\frac{x_{0}}{2 X} W+\frac{y_{0}}{2 Y} W \\ & P_{2}=\frac{1}{4} W-\frac{x_{0}}{2 X} W+\frac{y_{0}}{2 Y} W \\ & P_{3}=\frac{1}{4} W+\frac{x_{0}}{2 X} W-\frac{y_{0}}{2 Y} W \\ & P_{4}=\frac{1}{4} W-\frac{x_{0}}{2 X} W-\frac{y_{0}}{2 Y} W \end{aligned}$	3	Perpendicular to Horizontal Axis $\begin{aligned} & P_{1}=P_{2}=P_{3}=P_{4}=\frac{\ell_{1}}{2 X} W \\ & P_{1 S}=P_{3 S}=\frac{1}{4} W+\frac{\chi^{0}}{2 X} W \\ & P_{2 S}=P_{4 S}=\frac{1}{4} W-\frac{\chi_{0}}{2 X} W \end{aligned}$
			In Acceleration, Deceleration -Acceleration at Statring $\mathrm{P}_{2}=\mathrm{P}_{4}=\frac{1}{4} W\left(1-\frac{2 \mathrm{~V}_{1} \cdot l_{1}}{\mathrm{~g} \cdot \mathrm{t} 1 \cdot \mathrm{X}}\right)$ $P_{1}=P_{3}=\frac{1}{4} W\left(1-\frac{2 V_{1} \cdot l_{1}}{g \cdot t 3 \cdot X}\right)$ $\mathrm{P}_{2}=\mathrm{P}_{4}=\frac{1}{4} W\left(1+\frac{2 \mathrm{~V}_{1} \cdot \ell_{1}}{\mathrm{~g} \cdot \mathrm{t} \cdot \mathrm{X}}\right)$ -Constant Speed $\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{4}=\frac{1}{4} \mathrm{~W}$ g:Gravitational Acceleration $=9.8 \times 10^{3} \mathrm{~mm} / \mathrm{sec}^{2}$
2	Vertical Axis $\begin{aligned} & P_{1}=P_{2}=P_{3}=P_{4}=\frac{\ell_{1}}{2 X} W \\ & P_{1 S}=P_{2 S}=P_{3 S}=P_{45}=\frac{y_{0}}{2 X} w \end{aligned}$	4	

W:Acting Load(N) P1, P2,P3,P4:Load applied to the Linear System(N)
X, Y : Linear System Span(mm) V:Moving Speed(mm/sec)
$\mathrm{t}_{1}:$ Acceleration Time(sec) $\quad \mathrm{t} 3:$ Deceleration Time(sec)

Fig-5. Sinusoidal Load Fluctuation

Mean Load Derived from Fluctuating Loads

In general, the load acting upon a linear system can change according to how the system is used.This happens for example when the eciprocating motion is started, stopped as compared to constant speed motion, and whether or not work is present during transfer, etc. Therefore, in order to correctly design the life span under various conditions and fluctuating loads, it is necessary to obtain a mean load and apply it to the life span calculations.

1) When load changes in steps by a travel distance(Fig-3)

Travel distance ℓ_{1} subjected to load P_{1}
Travel distance ℓ_{2} subjected to load P P
Travel distance ln subjected to load Pn
Mean load Pm can be obtained using the following formula
$\mathrm{P}_{\mathrm{m}}=\sqrt[3]{\frac{1}{\ell}\left(\mathrm{P}_{1}^{3} \ell 1+\mathrm{P}_{2}{ }^{3} \ell 2 \cdots+\mathrm{Pn}^{3} \ell \mathrm{n}\right)}$
Pm: Mean Load Derived from Fluctuating Loads(N) \quad : Total Travel Distance
(2) When load changes almost linearly(Fig-4)

Mean load Pm can be approximated by the following formula:
$\mathrm{P}_{\mathrm{m}} \approx \frac{1}{3}\left(\mathrm{P}_{\text {min }}+2 \cdot \mathrm{P}_{\text {max }}\right)$
Pmin:Min. Fluctuating Load (N)
$P_{\text {max: }}$ Max. Fluctuating Load(N)
(3) 3 When the load change resembles a sinusoidal curve as shown in Fig-5 (a), (b), Mean Load Pm can be approximated by the following formula:

Fig-5(a) $\mathrm{Pm}_{\mathrm{m}} \approx 0.65 \mathrm{P}_{\text {max }}$

Fig-5(b)Pm ≈ 0.75 Pmax

Slide Guides

Rated life span is the total travel distance each linear guide of the same series can endure under the same conditions, without the occurrence of flaking in 90% of the system.
Rated life span can be obtained as follows from the basic dynamic load rating and the load to the slide guide.

L: Rated Life Span(km) C : Basic dynamic load rating(N)
in : Temperature Coefficient(See Fig-2) P:Acting Load(N)
w : Load Coefficient(See Fig-4)
The life span hours can be computed as a number of hours by obtaining the travel distance for a unit of time.lt can be obtained using the following formula, in which stroke length and stroke cycles are assumed to be constant.

Slide Ways

Rated load for slide ways is determined by the rolling elements(number of rollers). It can be calculated by using the following formulas:

Static Load Rating (N)

One shatitis useed
verically
Load Direction

Dynamic Load Rating
(N)

Static Load Rating
(N)
$C_{0}=\left(\frac{Z}{2}\right) \cdot C_{01} \cdot 2$

Two shafts are used in paralle

C1 : Basic Dynamic Load Rating per Roller(N)
Co1: Basic Static Load Rating per Roller(N)
Z : Number or Rolling Elements
The life span for slide ways is calculated by using the following formula.
$\mathrm{L}=\left(\frac{\mathrm{fT} \cdot \mathrm{C}}{\mathrm{fW} \cdot \mathrm{P}}\right)^{1013} \cdot 50$

L :Life Span Hours(km) C:Dynamic Load Rating(N)
fi :Temperature Coefficient(See Fig-2) \quad P:Acting Load(N)
fw :Load Coefficient(See Fig-4)
Life Span Hours
$\mathrm{Ln}=\frac{\mathrm{L} \cdot 10^{3}}{2 \cdot \mathrm{l} \cdot \mathrm{n} 1 \cdot 60}$

