NON-CLOGGING BUTTON DIES

-HEADED TYPE, STRAIGHT TYPE-

D tolerance		Catalog No.				0.01mm increments	v	G	d	н	т	
D	m5	n5	Ту	/pe	D	L	min. P max.	v	l u	u	п	'
3	+0.006 +0.002	+0.008 +0.004	(Equivalen	t to SKH51)	3		0.50~1.00			2.0	4	
4			Headed type (D m5)	Straight type (D n5)	4		0.50~2.00	0.4	0.2	2.4	5	3
5	+0.009 +0.004	+0.013 +0.008	SV-MHD	SV-MSD	5	16	0.50~2.50			2.9	6	
6			(Equivalent to SKD11)		6	20	1.00~3.00			3.4	9	
8	+0.012	+0.016	Headed type (D m5)	Straight type (D _{n5}) SV — MSD	8		1.00~4.00	0.8	0.3	4.4	11	5
10	+0.006	+0.010	SV-MHD		10	(22)	2.00~6.00			6.4	13	
6	+0.009 +0.004	+0.013 +0.008	(Powdered high-speed steel)		6	(25)	1.00~3.00			3.4	9	
8	+0.012 +0.006	+0.016 +0.010	Headed type (D m5)	Straight type (D n5)	8		1.00~4.00	0.8	0.3	4.4	11	5
10			SV-PMHD	SV-PMSD	10		2.00~6.00			6.4	13	

• D3 headed types are thin under the head. Be careful not to damage the bushings when mounting them.

• L(22) and (25) are specifications available for D4~10 only.

Catalog No. - 25 - P4.50

Days to Ship Quotation

Quotation

PRODUCTS DATA

LC18 — PC4.20 — LKC

	Alteration	Code	Spec.	1Code	
Alterations to shaped hole	(<u>O)81</u> a	PC	Shaped hole diameter change $ \underbrace{\min, : P > PC \ge \frac{Pmin}{2} \ge 0.50 }_{0.01 \text{ mm increments}} $ $ \underbrace{\max, : P < PC \le Pmax. + 0.2 }_{0.01 \text{ mm increments}} $		
Alteratio		PKC	Shaped hole diameter tolerance change p+0.01 ⇒ 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Alterations to full length		LC	Full length change 10≦LC < L 0.1 mm increments (If combined with LKC, 0.01 mm increments can be selected.) ⊕ Press-in lead is shortened by (L—LC). ⊗ Cannot be used for headed types.		
		SLC	Changes to full length and full length tolerance are processed using a single code. The allowable range of change, increment, ordering process, and notes (♥) are the same as for LC. LC LKC Full length + Full length tolerance change	otation	
		LKC	Full length tolerance change $ L^{+0.4}_{+0.2} \Leftrightarrow ^{+0.05}_{0} $	ð	
		LKZ	Full length tolerance change $ \begin{array}{c c} L \stackrel{+0.4}{\Rightarrow} \stackrel{+0.01}{\Rightarrow} & \otimes \text{ Cannot be used for L(LC)} < 16. \end{array} $		
		CKC	Changes to head thickness tolerance and full length tolerance are processed using a single code. Machining limits are the same as for TKC and LKC. So Cannot be used for straight types. TKC Head thickness tolerance change T + 0.0 ⇒ 0.02 L+0.1 ⇒ 0.05 L+0.2 ⇒ 0.05		
		MKC	Changes to head thickness tolerance and full length tolerance are processed using a single code. Machining limits are the same as for TKM and LKC. **Cannot be used for straight types.** TKM Head thickness $T + \frac{1}{0} + \frac{1}{0} = \frac{1}{$		

- Because an air inlet hole is created near the shaped hole. when a vacuum device is used to provide suction, an air flow is produced inside the button die. This results in more effective scrap discharge compared with button dies that do not have air inlet holes. [Fig. 1]
- It is also possible to use products such as a scrap vacuum unit (P.385) or commercially available pail-mounted cleaner as the vacuum device in place of the vacuum pump. In these cases, the drive source is compressed air from a compressor or other machine. [Fig. 2]
- •Non-clogging button dies [Products Data] ▶ P.1621

(Fig. 2) Examples of combinations with different vacuum devices

361